Audience Choice Award for Best Project Presentation

Object Detection

Chinmay, Phoebe, Lakshit, Tyler, Ian, Nishanth Instructor: Eric

Project Overview

Object Detection for Driverless Vehicles

- Input: Computer Vision
- Process: Neutral Networks/YOLO
- Output: Labels with Bounding Boxes

Enable self-driving cars to "see" and identify objects such as traffic lights, cars, and people.

Detection in a Video

Video ⇒ Images

e.g. Frame 32

e.g. Frame 169

Neural Networks

Convolutional Neural Networks

Neural Network (Perceptron) Prediction Using Sliding Windows

- Creating 32x32 rectangles in the image
- Building models and layers
- Preprocessing + Training
- Only plotting each rectangle with confidence level higher than the specified threshold
- Accuracy of only ≈77.8% on testing data

Overfitting

```
for y in range(0,100,16):
   for x in range(0,160,16):
      cropped = new_image[y:y+window_h, x:x+window_w]
   if cropped.shape == (window_w, window_h, 3):
      windows.append(cropped)
```


Label: [0 0.9949826']

Confidence %

Category:

1=Car 2=Truck

o=Background

Building a Convolutional Neural Network

- Adding different layers
 - Pooling, flatten, dense, convolutional, etc
- Compiled CNN
 - Specified optimizer, loss, and accuracy as the metric
- Then, trained the model for 20 epochs on training data
- Got an accuracy of ≈85.85%

```
Object detection and Instance segmentation

Convolutional neural network

Car

Photo

Man

Car
```

```
cnn = Sequential()
cnn.add(Conv2D(64, (3, 3), input_shape=(32, 32, 3)))
cnn.add(Cativation('relu'))
cnn.add(MaxPooling2D(pool_size=(2, 2)))
cnn.add(Flatten())
cnn.add(Dense(units = 128, activation = 'relu'))
cnn.add(Dense(units = 3, activation = 'softmax'))
# compile the network
cnn.compile(optimizer = optimizers.SGD(learning rate = 1e-3, momentum=0.95), loss = "categorical crossentropy", metrics = ('accuracy'))
```

Testing **CNN** on Sliding Windows

sliding_predictions(cnn, windows, threshold=0.6, labels = labels)

- Just changed model on from NN (perceptron) to our CNN
- Once again, only results with confidences above the threshold were plotted
- Accuracy of only 77.8%
- Suggests that our model may have overfitted (conformed to the training data)
 - Due to high training accuracy but not as high testing accuracy

YOLO - Bounding Boxes

YOLO - Darknet

Output

YOLO v3 network Architecture

YOLO - Suppression Steps

Final Result - Additional Video Demo (Night time)

Input Output

Additional Video Demo (Evening time)

Input Output

Additional Video Demo (Stop sign + fire hydrant)

Input Output

Conclusion

Outcome: A computer vision model for <u>object detection</u> in street images precisely

Significance: Enhanced safety, efficiency

for self-driving cars

Further Directions:

- Implement object detection fast enough in <u>real time</u>
- Identify the <u>road and non-road</u> areas

Thank you

~ Object Detection ~